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The topological pressure is evaluated for a dilute random Lorentz gas, in the
approximation that takes into account only uncorrelated collisions between the
moving particle and fixed, hard sphere scatterers. The pressure is obtained ana-
lytically as a function of the temperature-like parameter, b, and of the density of
scatterers, n. The effects of correlated collisions on the topological pressure can
be described qualitatively, at least, and they significantly modify the results
obtained by considering only uncorrelated collision sequences. As a conse-
quence, for large systems, the range of b-values over which our expressions for
the topological pressure are valid becomes very small, approaching zero, in most
cases, as the inverse of the logarithm of system size.
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1. INTRODUCTION

One of the most important developments in dynamical systems theory over
the past several decades is the discovery by Sinai, Ruelle, and Bowen, that
Gibbs ensembles have as central a role to play in the description of hyper-
bolic dynamical systems, as they do in statistical thermodynamics.(1–3) The
dynamical analog of the Gibbs formalism for statistical thermodynamics is
usually referred to as the thermodynamic formalism. (2, 4) One of the central
quantities in the application of Gibbs ensembles to dynamical systems is
the so-called topological pressure, or Ruelle pressure, which is the analog,



apart from a sign, of the Helmholtz free energy per particle of a thermo-
dynamic system, in the thermodynamic limit. This correspondence is made
clear by its definition in terms of a dynamical partition function, where the
pressure is defined in essentially the same way as the free energy per par-
ticle, with time t playing the role of system size.
In the dynamical case, the analog of the thermodynamic limit is the

infinite time limit.4 Like the free energy, as a function of temperature, volume

4 In addition one may consider the limit of infinite system size for the topological pressure as
well. As we will see this leads to new complications which do not occur in the Gibbsian
formalism of equilibrium statistical mechanics.

and particle number, generates the full equilibrium thermodynamics of a
many particle system, the topological pressure and its derivatives with
respect to a temperature like parameter, provide useful information about
the dynamical properties of the system under study. Kolmogorov–Sinai
and topological entropies per unit time can be expressed in terms of this
pressure and its derivatives, as can escape rates, and Hausdorff dimensions
of fractal structures and measures. (4, 5)

Despite the beauty of the theory and the power of the theorems that
have been proven about the dynamical Gibbs ensembles, there are few
examples of deterministic dynamical systems where the topological pressure
can be evaluated by analytical methods, other than simple maps, such as
baker maps and toral automorphisms. (6) The present authors, together with
Appert and Ernst calculated the topological pressure for a more compli-
cated dynamical system, a Lorentz lattice gas. (7, 8) Here a moving particle
hops from from one site to a neighboring site on a lattice, at each time step.
Some of the lattice sites are occupied by scatterers, such that if the particle
encounters a scatterer, it may change the direction of its motion at the next
step, with some given probability. If the particle lands on a site that does
not have a scatterer, it continues moving in the same direction at the next
time step. While this model can be reformulated as a deterministic dynam-
ical system, it was possible to evaluate the topological pressure by treating
the system as a stochastic one, and using the thermodynamic formalism as
it applies to stochastic systems. (4) In the large system limit the topologi-
cal pressure turns out to be determined by either large dense clusters of
scatterers (for the inverse temperature like parameter b < 1), or large vacant
regions (for b > 1), that form in a quenched distribution of scatterers on the
lattice. This phenomenon is very analogous to the one responsible for
Lifshitz tails in disordered systems showing critical phenomena. (9–11)

The purpose of this note is to provide a similar analysis of the topo-
logical pressure for a very useful model for studies in the kinetic theory of
gases, the Lorentz gas. This model served as the inspiration for the Lorentz

768 van Beijeren and Dorfman



lattice gas described above, but is a continuum model. It is constructed by
placing fixed scatterers in d spatial dimensions, and allowing a particle to
move in this system of scatterers, colliding with them, and moving freely
between collisions. When the scatterers are placed on a regular lattice this
model is known as the Sinai billiard, (12) which has served as a paradigm in
the theory of dynamical systems for several decades now. It is one of the
few nontrivial dynamical systems that are really close to realistic physical
systems and yet allow for rigorous proofs of many important properties,
including the existence of a finite diffusion coefficient. (13) For the applica-
tion of kinetic theory methods, however, it is simpler to consider disor-
dered systems, where the scatterers are located at random positions in
space. Further simplifications occur when the density of scatterers is low,
so that the average distance between them is much larger than their radii.
In this case the average time for return of the moving particle to a scatterer
with which it has previously collided becomes very long and therefore the
effects of correlations between collisions, to a first approximation, may be
ignored in many applications. The moving particle makes specular elastic
collisions with the scatterers, and travels freely between collisions. At low
density of scatterers, in large but not too large systems (we will become
more specific about this in Section 4) with periodic boundary conditions
(the simplest choice; in fact the precise nature of the boundaries does not
matter so much, as long as they are elastic) it is very reasonable to assume
that subsequent collisions of the light particle may be considered as inde-
pendent random flights, sampled from the equilibrium distribution of
random flights in the dilute d-dimensional Lorentz gas. This will be the
basis for our calculations in Section 2, where we will describe the model in
more detail and define the dynamical partition function and the topologi-
cal pressure. Then we show that the contributions from the supposedly
uncorrelated collision sequences can be accounted for in a relatively simple
way, in the spirit of Sinai’s analysis of billiard ball models. The following
section shows how the topological pressure can then be evaluated in terms
of the poles of a zeta function, called the Ruelle zeta function. We discuss
the properties of this pressure and evaluate the relevant dynamical properties
of the Lorentz gas in this approximation.
For large systems it is to be expected that the topological pressure will

be determined by large clusters of scatterers or large vacant regions, as in
the case of the Lorentz lattice gas. This will be investigated in Section 4,
where we will make some specific estimates for the topological pressure in
large systems both for b > 1 and for b < 1. These are based on plausible
assumptions about the types of closed orbits (for b > 1) or dense regions
(for b < 1) that will dominate under these conditions. The paper concludes
with a discussion of similar large system properties to be expected in
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systems of many moving particles, with some remarks on possible relations
between the topological pressure for b > 1 and scars in the corresponding
quantum mechanical models.

2. THE DYNAMICAL PARTITION FUNCTION FOR THE RANDOM

LORENTZ GAS

We consider an infinitely extended system of fixed hard-sphere scat-
terers of radius a, placed at random with number density n and without
overlapping, in a space of d dimensions. A point particle, of mass m, moves
with speed v in this array of scatterers making specular, elastic collisions
with the scatterers, and traveling freely between collisions. This system, the
random Lorentz gas, is therefore a Hamiltonian system, with the usual
symplectic properties. We consider here the case of low density, specified
by the condition that the radius of a scatterer is small compared to the
average distance between two scatterers, i.e., nad° 1. For the two and
three dimensional version of this model the Lyapunov exponents and
Kolmogorov–Sinai (KS) entropies have been calculated, with the use of
kinetic theory methods, appropriate for low densities of the scatterers. (14, 15)

Here we apply the same methods for the calculation of the topological
pressure.
The topological pressure is given in terms of a dynamical partition

function, Z(b, t), defined, as a function of an inverse-temperature-like
parameter b and time t, by

Z(b, t)=F dm(rF, vF)[L(rF, vF, t)](1−b). (1)

Here the integration is over the equilibrium measure, m(rF, vF), for the phase
space of the moving particle. The position and velocity of the particle are
denoted by rF, vF, respectively, where rF ranges over the configuration space
region available to the moving particle, not occupied by scatterers, and vF
ranges over all possible directions of the velocity, while the magnitude of
the velocity remains constant. The quantity L(rF, vF, t) is the ‘‘stretching’’
factor for a phase space trajectory of the particle starting at rF, vF and
extending over a time t. The stretching factor is the factor by which the
projection of an infinitesimal phase space volume onto the unstable direc-
tions will expand over a time t. For very long times the stretching factor is
given in terms of local positive Lyapunov exponents, li(rF, vF) by

L(rF, vF, t) % e t ; i li(rF, vF), (2)
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where the subscript i labels the distinct unstable manifolds in phase space
for the moving particle. The number of these unstable manifolds is given in
terms of the spatial dimension as d−1, since there are two neutral direc-
tions in phase space, and equal numbers of unstable and unstable mani-
folds. Finally, b can be used to determine various dynamical properties of
the system. The topological pressure, or Ruelle pressure, P(b) is expressed
in terms of the dynamical partition function by

P(b)=lim
tQ.

1
t
ln Z(b, t), (3)

which establishes the formal connection between the topological pressure in
dynamics and the negative of the Helmholtz free energy per particle in
statistical thermodynamics.
The structure of the dynamical partition function, given by Eq. (1)

suggests the procedure for its calculation for a Lorentz gas. One classifies
the regions of phase space according to the number of collisions the
moving particle will suffer in time t starting from a point in that region.
Thus we would need to calculate the contributions to Z(b, t) from regions
with no collisions, one collision, and so on. For each such region we then
need to calculate the associated stretching factors. These stretching factors
have been given for the dilute, random Lorentz gas by Van Beijeren, Latz,
and Dorfman, as products of stretching factors, L (d)i for each collision of
the moving particle. They depend on the dimension, d, of the system and
are easily obtained, for low densities (long free flight times), by methods
described in ref. 14 and 15, as

L (d)i (yi, hi)=5
2vyi
a
6 (d−1) |cos hi | (d−3) (4)

Here yi is the free time between the collision denoted by the subscript i, and
the previous collision of the moving particle, and hi is the angle of inci-
dence at collision i. It will be convenient here to express this angle in terms
of the inner product of the incident velocity vF and ŝi, the unit vector from
the center of the scatterer to the point of incidence at collision i, as
v cos hi=|vF · ŝi |, with the incident velocity and unit vector oriented so that
vF · ŝi [ 0. The time between one collision of the moving particle and the
next is sampled from the normalized equilibrium distribution of free times,
p(y), given for low densities, by

p(y)=ne−ny, (5)
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where n is the low density value of the average collision frequency, given
for d-dimensional dilute, random Lorentz gases by

n=2nvad−1
p
d−1
2

(d−1) C(d−12 )
. (6)

Using this expression, we can write the total stretching factor for a
sequence ofN collisions of the moving particle as

L(rF, vF,N)=D
N

1
L (d)i (yi, hi). (7)

The total time, T between the initial instant, and the final collision is
T=y1+·· ·+yN.
For low densities we can provide an expression for the average value

of the stretching factor for a sequence ofN uncorrelated collisions taking
place within a time interval t where the first collision takes place at time y1
and the last at time T. This average includes the probability that N colli-
sions will take place within a time t, so these averages will directly deter-
mine the dynamical partition function. The average value of the stretching
factor is given by

O[L(rF, vF,N)](1−b)Pt=n 1
n

Jd
2N F

.

0
dy1 · · ·F

.

0
dyN+1 F

−

dŝ1, ..., dŝN D
N

1
cos hi

×5D
N

i=1
L(d)i (yi, hi)6

(1−b)

e−n(y1+· · ·+yN+yN+1)

×5G 1t−C
N

1
yi 2−G 1 t− C

N+1

1
yi 26. (8)

Here G(x) is the usual Heaviside function. The Heaviside functions and the
additional time integral, over yN+1, are included in this expression to
require that precisely N collisions take place over time t. The averaging
includes averages over all possible free times between two collisions, using
Eq. (5), as well as integrations over the possible directions of incidence at
each collision. The prime on the integrations over solid angles indicates
that only half of the total solid angle is to be included corresponding to the
requirement that vF · ŝ [ 0, at each collision. The angular factors of cos hi
properly account for the volumes of collision cylinders when one calculates
the rate at which collisions take place with angle of incidence, hi, and
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Jd is a normalization constant used in the averaging and is given, for
d-dimensions, by

Jd=
2p

d−1
2

(d−1) C(d−12 )
. (9)

The dynamical partition function for the Lorentz gas at low density can be
expressed in terms of these average values by summing over contributions
from all uncorrelated collision sequences as

Z(b, t)= C
.

N=0
O[L(rF, vF,N)]1−bPt. (10)

The term forN=0, will be set equal to n exp[− nt], corresponding to the
dynamical partition function for a particle with no collisions in the time
interval (0, t) and a stretching factor of unity.

3. THE ZETA FUNCTION

Although the integrals in each term in Eq. (10) are not difficult, the
calculation of the topological pressure is greatly simplified by introducing a
zeta function, (2) adapted to continuous time dynamics, obtained by taking
the Laplace transform on Eq. (10). One finds, using Eq. (4), that

Z (d)(z)=F
.

0
dt e−zt Z(b, t)

=
1
n+z
31−G(d, b) d−1

2
n

(z+n) (d+b−db)
12v
a
2 (d−1)(1−b)4−1 (11)

where

G(d, b)=
C(d−12 ) C(

d−1+b(3−d)
2 ) C(d+b−db)

C(d−1+b(3−d)2 )
. (12)

The pole of the zeta function which is closest to the origin is the topo-
logical pressure. This follows simply from the observation that if the
dynamical partition behaves, for asymptotically large t as exp[tP(b)], the
zeta function will have a pole at z=P(b). It is an elementary calculation to
find this pole, which is given by

P (d)mf (b)=5n
d−1
2
12v
a
2 (d−1)(1−b) G(d, b)6

1
d+b−db

− n. (13)
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Here the subscript ‘‘mf’’ indicates that these are ‘‘mean field’’ results,
obtained by ignoring correlations between successive collisions. As we shall
see in the next sections, these results are valid only in a small region about
b=1 for large systems.
We can now use these results for the pressure to check if they agree

with known results and to determine the values for other dynamical quan-
tities. The topological pressure for b=1, should vanish for a closed system,
and one easily sees from Eq. (13), using simple identities for gamma func-
tions, that this expression satisfies this condition. Further, the KS entropy
can be determined from the topological pressure by taking a derivative with
respect to b and setting b=1, as

hKS=−
dP(b)
db
:
b=1

(14)

Simple calculations show that this condition is satisfied as well, leading, for
d=2, 3 to the results found by Van Beijeren et al.: (14, 15)

h (2)KS=2nav(1− c− ln(2na
2)); (15)

h (3)KS=2na
2vp(ln 2− c− ln(na3p)). (16)

Here c is Euler’s constant.
New results can be obtained from the pressure by setting b=0 . The

value of the pressure at this point is the topological entropy per unit time,
and we thus obtain the mean field value

h (d)top=5nvd(d−1)(4p)
d−1
2 C 1d−1

2
26

1
d
− n, (17)

where we have inserted expression Eq. (6) for the collision frequency in the
first term on the right hand side of Eq. (17). It is interesting to note that
these topological entropies depend upon the 1/dth power of the density of
the scatterers, and have a finite, non-zero limit as the size of the scatterers
vanishes. This latter result is consistent with rigorous results of Burago,
Ferleger, and Kononenko (16) who provided estimates for the topological
entropy of the periodic Sinai billiard in d-dimensions. They were able to
prove that for this system, the topological entropy has a finite non-zero
limit as the radius of the scatterers vanishes, and that in this limit, when
variables are used in which both the density and the velocity equal unity,
the topological pressure is a non-decreasing function of the number of
dimensions, bounded from below by ln(2d−1). One easily checks that
these properties are also satisfied by the disordered Lorentz gas. For large
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d in fact one finds an increase proportional to `d rather than ln d.
However, please note that with increasing system size, for fixed radius a,
the present expressions for the topological pressure of the disordered
Lorentz gas, for b-values well below unity, soon have to be replaced by
values resulting from orbits restricted to regions with high scatterer density.
Therefore the validity of Eq. (17) is restricted to a maximal system size,
depending in turn on the density of scatterers. We will come back to this in
our discussion.

4. LARGE SYSTEMS

For chaotic systems the dynamical instability typically gives rise to an
exponential increase with time of the stretching factor L(rF, vF, t). For a
given time, the actual rate of increase will depend on the initial values of rF
and vF. For b > 1 regions of slow increase will be weighted most heavily.
Therefore such regions may dominate the dynamical partition function,
even if the probability of the moving particle to stay inside it decays expo-
nentially with time. Our claim is that for specific realizations of the disor-
dered Lorentz gas the orbits dominating the dynamical partition function
for long times at b > 1 are orbits concentrated around the least unstable
periodic orbit (LUPO) of the system, that is, the periodic orbit with the
smallest exponential increase of its stretching factor. We have no rigorous
proof for this statement, but we think it is extremely plausible. And in any
case, the resulting values for the topological pressure do establish strict
lower bounds to the actual values.
For b < 1 the dynamical partition function will tend to be dominated

by orbits in regions with a higher than average stretching factor. In analogy
with the case b > 1, one might expect that, for b < 1, the dominating region
will consist of orbits concentrated around the most unstable periodic
orbit.5 For b < 0 this is indeed the case, for large enough systems, but for b

5We observe from Eq. (4) that the stretching factor of an orbit may be large for d=2, and for
grazing collisions where h % p/2. However for a disordered Lorentz gas it is not possible to
find long orbits mainly consisting of nearly grazing collisions, and the typical contribution to
the topological pressure for b < 1 will come from orbits of the type discussed here.

between 0 and 1 this is not true. The reason is that this set of orbits picks
up a weight factor 1/L(rF, vF, t) for its long term survival probability, hence
one sees from Eq. (1) that for b between 0 and 1 periodic orbits with a
large stretching factor get small weight in the dynamical partition function.
Instead one has to look for the spatial region with the optimal combination
of low escape rate and high average stretching factor for orbits confined to
it. Here one recognizes a strong analogy to the Donsker–Varadhan argu-
ments (11) for stretched exponential decay in diffusion among fixed traps.
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Fig. 1. A typical unstable periodic orbit. The light particle bounces back and forth between
the same two scatterers.

In the remainder of this section we separately discuss the cases b > 1
and b < 1 in greater detail.

4.1. The Topological Pressure for b>1

The least unstable periodic orbit is, roughly speaking, the orbit with
the smallest number of collisions per unit time. In almost all cases this will
simply be an orbit with the light particle bouncing back and forth between
the same two scatterers, as illustrated in Fig. 1. In exceptional cases
though, the LUPO may involve more than two scatterers.
Assuming that indeed the LUPO involves just two scatterers and, for

simplicity, that the density of scatterers is low, we easily find an approxi-
mation for the distribution of the length of the free, periodic path between
the two scatterers. Let P(l) denote the probability that the system nowhere
contains a periodic path of the type sketched above with a free path length
exceeding l. For a large system, with N scatterers in a volume V, this proba-
bility, in two dimensions, satisfies an equation which is approximately

dP(l)
dl
=pn(l+2a) Ne−2nalP(l), (18)

which is obtained by the following reasoning: suppose the system has
no periodic paths with a free path length exceeding l. The chance for this
is P(l). To obtain the probability for a largest periodic path between
l and l−dl one has to multiply this with the probability of having two
scatterers at a distance between l+2a and l+2a−dl, which is roughly
N22p(l+2a) dl/(2V), times the probability, exp(−2nal), that the periodic
orbit between those scatterers is free from other scatterers. Integrating this
equation and taking the derivative of P(l) with respect to l, one finds the
probability distribution p(l) for the length of the LUPO as

p(l)=pnN(l+2a) e−2nal exp 3 −pN
2a
1 l+2a+ 1

2na
2 e−2nal4 . (19)

776 van Beijeren and Dorfman



For large N this distribution is sharply peaked around a value l0 satisfying

l0=
log
pN(l0+2a)
2a

2na
d=2. (20)

The width of the distribution is of O(1), and therefore of O(1/logN)
relative to l0. In three dimensions a completely analogous calculation leads
to

P(l)=exp 3 −2N 1 (l+2a)
2

a2
+
2(l+a)
pna4

+
2

p2n2a6
2 e−pna2l4 . (21)

From this one finds the maximum l0 in the distribution of the length of the
LUPO satisfies the equation

l0=
log
2(l0+2a)2N

a2

pna2
d=3. (22)

Again, one finds that the distribution is sharply peaked around a value
proportional to logN, with fluctuations of O(1). Here too the results could
easily be extended to arbitrary dimensionality d, but we did not work this
out.
For a given scatterer configuration the topological pressure resulting

from the orbits near the LUPO follows from the value of l0, as

P (d)po (b)=−b
(d−1) v
l0

log
2l0
a
, (23)

where we used Eq. (4), with yi=l0/v and fi=0, and the fact that the long
time survival probability near an unstable periodic orbit of stretching
factor L(t) is given by 1/L(t).
For given b and l0 the topological pressure is found as the larger of

the expressions (13) and (23). Since the former are proportional to b−1
and the latter roughly to b/logN, there is a sharp phase transition at a
b-value satisfying b−1 ’ 1/logN. In the terminology of ordinary ther-
modynamics this is a first order phase transition, as the first derivative of
the topological pressure with respect to b is discontinuous at this transi-
tion. This implies, however, that the range of b-values > 1 for which the
topological pressure gives information about the bulk properties of the
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system is very limited for large systems; specifically it is of order 1/logN.
For larger b-values the topological pressure rather gives information about
the smallest escape rate of orbits from the neighborhoods of unstable
periodic orbits. This obviously is of great importance for the asymptotic
rate of decay to equilibrium, which cannot be larger than this smallest
escape rate. It can easily be smaller, if the asymptotic rate of mixing is
smaller than the smallest escape rate or, even worse, if the system does not
decay to equilibrium at all. Notice that the smallest escape rate may be
zero, corresponding either to algebraic escape or to finite probability of not
escaping at all (in which case one should not speak of unstable periodic
orbits any more). But one should also notice that the pockets in phase
space corresponding to the neighborhoods of unstable periodic orbits often
cover such minute fractions of the total available phase space volume, that
for the physics of the system they are of no practical importance. We will
come back to this briefly in our discussion.

4.2. The Topological Pressure for 0<b<1

For 0 < b < 1 the factor 1/L(t) in the weighting of the near periodic
orbits suppresses the contributions of strongly diverging periodic orbits to
the topological pressure, as we noted already. Instead, we have to look for
compact regions with high collision rate and slow escape. In two dimen-
sions, with scatterers not allowed to overlap each other, the regions best
satisfying these criteria obviously are enclosures of three scatterers almost
touching each other, as illustrated in Fig. 2. Again, we have no rigorous
proof of this, but the statement seems even more obvious than the one
about the LUPO’s.

2

3

1 12l 23l

l13

Fig. 2. A region enclosed by three disks. The escape rate of a light particle from this region
is small and the collision frequency with the surrounding scatterers is high. The total escape
length l is the sum of l12, l13 and l23.
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The escape rate from such a trapping region may be expressed to a
very good approximation as (17)

ntr=
vlesc
pO
, (24)

with O % (`3− 12 p) a
2 the surface area of the trapping region and the

escape length lesc, the sum of the distances between the pairs of surrounding
spheres.
In large systems there will be many of such trapping regions and the

one with the smallest lesc will determine the topological pressure when b is
sufficiently smaller than 1. Let us call this value l1. We define Q(l) as the
probability that none of the trapping regions has an escape length < l and
notice that it approximately satisfies the equation

dQ(l)
dl
=−
1
6
`3 pal2n2Nq3Q(l), (25)

with q3 the triplet correlation function for three scatterers, all touching
each other. The solution to this equation is

Q(l)=exp 1 −`3 p al
3n2Nq3
18
2 , (26)

from which the distribution of l1 is obtained as q(l1)=−dQ(l1)/dl1. The
maximum of this distribution is not sharp, but for our purpose, it is only
important that this maximum scales as a function of l1/(N1/3a). Conse-
quently, as a function of N the escape rate ntr scales in the same way, even
though its specific value depends on the scatterer configuration at hand.
The topological pressure in this case may be expressed as

P (2)tr (b)=(1−b) l
SB
cp − ntr, (27)

with lSBcp the positive Lyapunov exponent of a triangular Sinai billiard at
close packing. From ref. 18 we quote the value lSBcp % 3.6v/a. Comparing
(27) and (13) we note that the range of b-values over which the mean-field
value usually dominates that of the most trapping region satisfies

b > 1−
ntr

lSBcp −h
(2)
KS

, (28)

where h (2)KS is given by Eq. (16). Thus, the validity of the mean field result is
restricted in this case to a region of b values slightly below unity, with size
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of O(N−1/3). Here, too, the phase transition that occurs when the most
trapping region becomes dominant will be of first order.
The three dimensional case (again, for simplicity we won’t consider

arbitrary d) is more subtle because, with non-overlapping scatterers, there
are no trapping regions from which escape only is possible through very
narrow channels. Instead, a large topological pressure will result from the
presence of a fairly large compact volume with a higher than average scat-
terer density. Thus, such high density regions will determine the topological
pressure, even in three dimensions, away from a small region near b=1.
In order to obtain useful estimates of the size of this region, we consider
compact volumes of radius R, typically of spherical shape, though this
particular shape is not essential to our argument. The escape rate from
such a region will be of the form n(R) ’ D/R2, with D the diffusion coeffi-
cient. Here we use the fact that the distribution of moving particles in the
disordered Lorentz gas satisfies a diffusion equation on large time and
length scales. The largest density fluctuation found in such a region in a
system of total volume R3 will typically be ’ n1/2R−3/2 log1/2(N/nR3). This
follows from the Gaussian nature of density fluctuations in large regions,
with standard deviation ’ n/R3, and the observation that the number of
independent volumes of radius R is proportional to N/nR3. Therefore the
excess topological pressure resulting from trajectories restricted to a region
of radius R with maximal density fluctuation is obtained by means of a
simple Taylor expansion of the topological pressure about its mean field
value in powers of the density deviation. The resulting correction to the
mean field pressure will then be roughly of the form

DP (3)tr (b)=C1(1−b)
n1/2

R3/2
“c (3)mf
“n
1 log N

nR3
21/2−C2D

R2
, (29)

with C1 and C2 constants of order unity and the subscript ‘‘tr’’ indicating
that these corrections are due to trapping regions. Furthermore,

c (3)mf —
P (3)mf (b)
1−b

.

The expression (29) takes its largest value, ’ (1−b)4 (logN)2, for R
roughly proportional to (1−b)−2 (logN)−1. In order for this largest value
of DP (3)tr to be a small correction to P

(3)
mf (b), the parameter b must satisfy

the condition 1−b° (logN)−2/3. Furthermore, for DP (3)tr (b) to be nega-
tive for all allowable values of R one needs 1−b < CN−1/6, with C some
constant.
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On the basis of this analysis one can expect that also the phase transi-
tion from P (3)mf to P

(3)
tr will be first order, but only very, very weakly so. If b

is increased within the range 1−b ’N−1/6 one finds that for b very close
to 1, the expression (29) is negative definite within the allowable range of
R-values. It first becomes positive, at a value of R/V1/3 where the expres-
sion on the right hand side of Eq. (29) attains a maximum, for some speci-
fic b, which then marks the phase transition. Since at this transition R
jumps to a value ° V1/3 it is a first order transition indeed. However, the
resulting change in the topological pressure is so small, for b in the range
between 1−b ’N−1/6 and 1−b ’ (logN)−2/3, that in fact the transition
will appear to be continuous. Furthermore one should keep in mind that
the scenario sketched here for the determination of the topological pressure
is very heuristic. There may be additional contributions to the dynamical
partition function, which we have overlooked, but are in fact dominant for
certain ranges of b-values.
Further, we want to remark that Eq. (29) should be used with care for

1−b strongly exceeding (logN)−2/3. For the diffusion approximation for
the escape rate to be valid R should be much larger than both the size of
the scatterers, a, and the mean free path between collisions. Further, for the
Taylor expansion of the topological pressure to be valid, the expression
multiplying “c (3)mf/“n on the right hand side of Eq. (29) should be ° 1.
Nevertheless, in this range of b-values we can be sure that for large systems
the topological pressure is dominated by contributions from one of the
trapping regions.
It is also useful to note that even for b > 1 there is a small region that

is dominated by trajectories trapped in compact regions, this time in
regions of lower than average density. Combining the arguments presented
before, one finds that this region is determined roughly by conditions of the
form C3N−1/6 < b−1 < C4(logN)−3/4, with C3 and C4 constants of order
unity. However, throughout this region the relative corrections to P (3)mf are
small.

5. DISCUSSION

In summary, we have obtained explicit, mean-field type expressions for
the topological, or Ruelle pressure of a dilute disordered Lorentz gas,
leading to Kolmogorov–Sinai entropies in agreement with the results of
previous calculations. However, we also found that for large systems the
range of the inverse-temperature like parameter b of Ruelle’s thermo-
dynamic formalism over which these expressions are valid, is restricted
to a very small region around b=1. For b > 1+O(1/logN), with N the
number of scatterers in the system, the topological pressure is determined
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by the decay rate of orbits from the region in phase space surrounding the
least unstable periodic orbit, and for b < 1−O(N−1/3) in two dimensions,
and for b < 1−O((logN)−2/3) in three dimensions it is determined by orbits
that remain trapped in areas enclosed by three disks, or in fairly large
regions of higher than average scatterer density, respectively. In fact these
restrictions do not only apply to dilute systems. They will hold for any
system with particles moving among a disordered array of fixed scatterers.
The periodic orbit results are of interest because they give information

related to the asymptotic long time decay to equilibrium. Similarly the
trapped region results contain information about the fastest rate of infor-
mation loss that may be observed for long times, but the way in which dif-
ferent regions are weighted, especially how their escape rates are taken into
account, depends on the choice of b.
Another context where the least unstable periodic orbits play a crucial

role is in the description of scars, i.e., eigenfunctions in quantum systems
that are concentrated in the neighborhoods of periodic orbits of the corre-
sponding classical system. (19) An important difference is that in this case the
classical orbit need not have a minimal length (or more precisely, a stretch-
ing factor that is sufficiently smaller than the average bulk stretching
factor) to be observable as a scar. Nevertheless, our findings suggest that
the topological pressure for b > 1 may be used as a tool for finding the
most prominent scar in the quantum mechanical counterpart of a classi-
cally chaotic system.
Two of the most interesting questions to be asked are: In how far can

the results obtained here be generalized to systems of interacting moving
particles? and: In how far will similar conclusions hold in such cases?
For simple gases at low densities we believe that we can calculate the
leading order mean field approximation to the topological pressure along
the lines sketched in the present paper, by combining these with the
methods of ref. 20. Again, for b < 1 we expect dominance of near periodic
orbits. In fact, for hard spheres the situation is even slightly worse than in
the Lorentz gas. With periodic or simple reflecting boundary conditions
one may easily construct periodic orbits without any collisions, simply by
assigning equal velocities to all particles (or, if one insists on zero total
momentum, velocity vF to half of the particles, in one half of the box, and
−vF to the other half, in the other half of the volume). The neighborhoods
of these orbits will give rise to a strictly vanishing topological pressure for
all b > 1. Even with irregularly shaped boundaries and not too many par-
ticles, one may construct orbits without inter-particle collisions by lining up
all the particles in a long row, or ‘‘duck march,’’ along the same single
particle trajectory in phase space, chosen such that there are no near-inter-
sections with a short time lag. There may be a stretching factor > 1 for
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such an orbit, but that is entirely due to the collisions with the boundaries
and therefore will be anomalously small compared to the stretching factors
for typical initial conditions. One must say that it looks unsatisfactory
when the topological pressure of a system of many interacting particles is
determined exclusively by a very rare process in which the only collisions
occurring are with the boundaries. This obviously is a case where the long
time asymptotics of the equations of motion in tangent space is completely
irrelevant from the physics point of view. It is a clear example illustrating
once more why the large system limit is both so hard and so interesting.
For b < 1 our conclusion that the topological pressure soon becomes

dominated by orbits constrained to a denser than average part of space,
does not carry over in this way to systems of many interacting particles.
There are no stationary regions in such systems that will maintain a higher
than average density forever. On the other hand, this phenomenon is a
strong warning that similar behavior might very well occur in fluid systems.
For example, if the phase space of a many particle system contains meta-
stable regions with local stretching factors that are larger than the average
stretching factor of a ‘‘typical’’ equilibrium region, the topological pressure
for b < 1− E most likely will be determined by orbits constrained to one of
these metastable regions. In such a case again, the topological pressure
contains no information on the equilibrium properties of the system, but it
is a fascinating idea that a study of the b-dependence of the topological
pressure may reveal properties of the metastable states of a system. A con-
crete example where such dominance may be expected, in our opinion is
provided by hard spheres at densities beyond solidification. For such den-
sities there are many glassy states, as is known for example from experi-
ments on colloidal systems. (21) It is very likely that the collision frequency
in these glassy states is higher than in the crystalline state, and the corre-
sponding stretching factor will be higher.
We also remark that it may be very helpful to use the Ruelle zeta-

function not only for extracting the topological pressure from its pole, but
also for studying its full z-dependence in more detail. For small, but not
too small, z one might expect this function to exhibit the behavior of
‘‘typical stretching factors’’ in the bulk system. A possibility would be to
examine various scalings of z with system size and to consider the behavior
of the zeta-function in terms of its dependence upon the scaled parameter
in the infinite system limit, much in the spirit of hydrodynamic scaling.
We also want to add some words of caution regarding the topological

entropy, in other words the topological pressure for b=0. For not even
very large systems this value of b is far beyond the region in which the
topological pressure is determined by bulk averages. Therefore, in disor-
dered systems, the topological entropy, rather than revealing how the
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explored area in phase space of a typical trajectory bundle increases with
time, will merely provide information, in most cases, about very atypical
trajectory bundles, restricted to some small subspace of phase space.
Finally, we plan to extend the work reported here, not only to dilute

gases of moving particles, but also to Lorentz gas systems with open bound-
aries and/or with driving fields combined with Gaussian thermostats.
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